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The axisymmetric vibrations of cylindrical shells have been investigated 
in [ 1,2 1, In [ 1 I ) using the method of undetermined length developed in 
[ 3 I ‘ there is obtained an exact numerical solution of a problem of 
vibrations of a hollow cylindrical shell with clamped and free supported 
edges. Experimental work on axisymmetrical vibrations of cylindrical 
shells was conducted in [ 2 1 A 

In this paper the problem of axisymmetrical vibrations of a cylindri- 
cal shell is solved using a displacement function. An expression is found 
for such a function which gives all characteristic (eigen) functions of 
the boundary-value problem. The frequencies and the modes of vibrations 
of the shell for the simply supported edges are investigated, taking 
into account all inertia forces and also considering only the normal re- 
sultant of inertia force, in a wide range of variation of dimensionless 
curvature. The comparison of the results indicates that the frequency of 
vibrations, calculated without taking into account the tangential inertia 
forces, is close to the lower frequency only for small values of dimen- 
sionless curvature. It is also shown that the vibrations with extensive 
transverse displacements do not always have the lowest frequency. Such 
vibrations have frequencies close to the frequencies calculated without 
tangential inertia forces. 

1. Consider a cylindrical shell of length Q, radius R and thickness h. 
The natural axisymmetrical vibrations of such a shell in vucuo are 
governed by the following equations [ 4, p. 257 I I 
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where Q is the coordinate along the generator of the cylinder; 6 = a/nil 
is dimensionless curvature of the shell; c = h2/12a2; E. v, p are Young’s 
modulus, Poisson’s ratio and density of the material, respectively. 

Consider that a shell is executing harmonic vibrations with frequency 
o. Expressing the displacements 

u(a, t) = u (a) eaf, w (a, t) = w (cz) eof 

we rewrite (1.1) as 

( &-Q+++&~)w=0 (QG a2~~2;va) aa) (12) 

an(v&c$)u f(Cd& + Q2n2 + c6%4+ 82n2)w = 0 . 

where a is a dimensionless frequency. In (1.1) and (1.2) n is an arbi- 
trary number, which will be taken to be equal to the number of longi- 
tudinal half-waves of the shell. 

Consider now the operational determinant in (1.2). In order to intro- 
duce the displacement function it is necessary to consider algebraic 
complements either of the elements of the first line or of the elements 
of the second line of this determinant. 

2. Let us introduce a displacement function @(a) by the following: 

u (a) = 6n (cW” - MD’), w(a)=W-Qan2@ (2.1) 

Substituting (2.1) into (1.2),, we see that the first equation of 
system (1.2) is identically satisfied, and the second one has the form 

c (1 - &PC) CDV’ + cna (26”V- 8 a) @Iv t 

+na(Qa+ d4nac+ aa- aava) 0” - n4Q 2 (Q a + A4nac + aa) Q = 0 (2.2) 

Substituting (2.1) into the expressions for stresses and moments in 
terms of the displacements [ 4. P. 256 11 we obtain 

MI = 12 f1 _ v2J =2 [(I - 6anac) @ Iv + (8anav --sz w) CD”] 

In the case of movable hinges in the axial direction along the edges 
of a shell we have 

w = 0, Nl = 0, iLlI = 0 for a = 0, a = 1 (2.3) 
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Since (1 - a2n2c) > 0 (the thickness of the shell is smaller than the 
radius) and c a2n2 - v f 0 ( fi in a given problem cannot be a real number 
if we disregard the rigid body motion of the shell) then (2.3) can be 
written as 

al = CD” = dV = 0 for a = 0. a=1 (2.4) 

Solution of (2.2) has the form @(a) = cle z1= za 
+ . . . + c6e 6 , where 

21 . . . Z6 are the roots of the characteristic polynomial 

c (1 - 62n2c) 26 + cn2 (28% - 52 2) 2’ + 
+ n2 (Q 8 + 6’n2c -j- 62 - 6W) 22 - n4Q2 (a 2 + 6Jn% + 82) = 0 (2.5) 

Utilizing now the boundary conditions (2.4) it is possible to con- 
struct out of the roots zk a characteristic determinant and equate it to 
zero. The form of this determinant depends upon the multiplicity of the 
roots. A.A. Movchan demonstrated, however, that it is possible to avoid 
the consideration of the different cases of root multiplicity by con- 
sidering the equations 

A./G==0 (2.6) 

where h is a characteristic determinant for single roots, u is Vander- 
monde’s determinant formed with the values ZI . . . z6. Since the charac- 
teristic polynomial contains only even powers of 2, we can write zl=- 24, 
t2 = - 13, z3 = - z6. Thus we have 

sinb 21 sinh 22 sinh23 
-- - - z 0 

21 22 R3 

It is clear then that the boundary conditions (2.4) are satisfied if 
the characteristic roots of (2.5) are n’ni or - nni (n = 1, 2, 3 . . . ). 
Thus solutions of (2.2) satisfying (2.4) are 

CD (a) - sin nna (2.7) 

It can be shown that all other solutions of the boundary-value prob- 
lem (2.2). (2.4) differ from (2.7) by a multiplicative constant. Sub- 
stituting z = gni in (2.5), we obtain the frequency equation for a simply 

supported shell 

62 ’ + [AZ + 62 + cfl2 (A’ $- a’)] 52 a + n28” (1 - v2) + 
+ c:z2 [(I - 8212%) 310 + n264 - 26%c4] = 0 (2.8) 

For fixed values of 6, n, c. v. (2.8) yields four frequencies 

n, = i (0,5 [Aa + P + cn” (A’ + 6’)] - 0.5 ([A2 + 62 + cna (A’ + S4)]2 - 
- 46Qc2 (1 - v2) - 4cn2 [(I - 8?cn2) JP - 782~4v + TC~~~])“~)“~ 

n 2 = i (0.5 [JP + 82 + cfl2 (A’ + a*)] + 0.5 ([AS + 82 + cn2 (A’ + 64)12 -- 
- 4&G (1 - r2) - 4cn2 [(I - h2cn2) n6 - 262n4v + z-c~~~])‘~~}“~ 

Qa=-Q,, Cl,=--&2 (2.9) 
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For 6 = 0 (for a strip of width a) we obtain 4 = dlcn’ni, n2 = ni. 

Substituting (2. ‘I) into (2. l), we obtain the displacements 

u (a) = -tima (v + n2n2c) cos nffa, 70 (a) = -n2 (x2 + Q2) sin nna (2.10) 

3. It is also possible to introduce the displacement function in an- 
other way 

u (a) = CC + n* (51 2 + 64n2c + at) 4). U’ (a) = an (cW” - VW) (3.1) 

In this case the second equation of system (1.2) is satisfied identi- 
cally and the first one reduces to (2.2). Expressing the stress resultant 
and moment by the displacement function. the boundary conditions (2.3) 
can be expressed as follows: 

Q’=O,‘“=@v=O Jfora=O,a=1 (3.3) 

Thus the equation will be reduced to 

Z~ZZZJ sinh z, sinh zz sinh ~3 = 0 

We find then zk = f nni. Thus the solution of (2.2) satisfying (3.2) 
has the form 

(11 (a) = cos ma (2.3) 

The frequency equation coincides with (2.8). The displacements are ob- 
tained by substituting (3.3) into (3.1) 

(3.4) 

IL (a) = n2 (52 2 + 52 $- am + .x4n2c) cos nna, 

To simplify calculations one neglects sometimes the inertia forces 
due to the tangential displacement. This assumption is equivalent to 
dropping the time derivative in the first equation of (1.1). As a con- 
sequence of this. in the first equation in (1.2) and in (2.1) the terms 
which are multiplied by the frequency vanish. (2.8) now is 

~2 + 62 (1 _ vy + n?c (64 -i- ~4 - 26+-p - n4a2n2c) = 0 (3.5) 

The frequency thus determined will be denoted by fi2-. For 6 = 0. 
iI-= cl,. 

4. To estimate the influence of the nondimensional curvature 6 on the 
frequencies al, R, and fi2-, the results of numerical calculations for 
c = l/3 x lo- 6; v = l/3; n = 1, 2 . . . 5; 6 = 1. 2 . . . 20 are plotted 
in Fig. 1. From this figure it is seen that fi2- and fll are close for 
small values of 6 (6 < 2). For large 6, C12- differs considerably from !JI. 



Neglecting in (2.9) and (3.6) terms multiplied by small parameter C, 
we obtain the following approximate frequency formulas: 

1099 Axisynnetric vibrations of cylindrical shells 

52 I = i V0.5 (n? + h2 - J&G - cS~)~ +46’v%c’), 

// 

Q* = i J/o.5 (9 + 62 + v/(3-- P)* + 46Wn~) 

Q2- = i8jf/1 

% Q- For c = l/3 x 10W6; u = l/3; n < 6; 5 
k 

1 < 6 \( 20, these formulas yield at least 

7r 9 three correct figures of the frequencies. 

Consider now displacements of the 
8 

0 
cylindrical shell. For each frequency a, 

5 IO or 4, (2.10) gives two systems of dis- 

Fig. 1. 
placements. Since the frequencies satisfy 
(2.8), it is easy to demonstrate, however, 

that these displacements are proportional to each other. Thus, for the 
determination of the displacements corresponding to a given frequency one 

may use either formula in (2.10) or (3.4). For the sake of definiteness 
we shall u.se (2.10) for q, and (3.4) for fi2. It is easy then to show 

that using the identity 

we obtain the following two systems of displacements: 

u (4 = P cos ma, w (a) = sin z/la (4. ,I ) 

u (a) = cos ma, 10 (a) = -P sin ma, P= 
cSn (Y + nWc) 

c&z + n* 
(‘l.2) 

The displacements (4.1) correspond to the frequency “I and (4.2) cor- 

respond to 4. 

The magnitude P we shall call amplitude. The amplitude P was calcu- 

lated for c = l/3 x 10m6; v  = l/3; n = 1, . . . , 5; 6 = 0, 1, . . . , 20. 
The calculations show that the changes 
in the value of n influence only the 
third figure in the amplitude. For this 

P 

reason in Fig. 2 the relationship be- 3 

tween P and 6 is represented by one 
line for various n. An approximate 
formula for P is obtained by dropping 
terms multiplied by the small factor c. 

t./ 
6 

0 6” 5 

Fig. 2. 

Formula (4.3) yields at least three correct figures for c & l/3 x 10B6; 
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n < 6; u = l/3; 0 < 6 < 20. 

Let us now investigate the dependence of P on 6. For 6 = 0 (for an 
infinite strip), P = 0. Using (4.1) and (4.2) we see that, for 6 = 0, fi2, 
is the transverse frequency (V ft 0) and sl, is the longitudinal frequency 
(u #t 0). For 6 > 0. P is different from zero. This means that to each 
frequency there will correspond vibrations with nonzero transverse and 
longitudinal displacements. If P < 1, we shall call fil the frequency of 
predominantly transverse vibrations and % the frequency of predominantly 
longitudinal vibrations; the nomenclature will be reversed if P > 1. 
From the graph in Fig. 2 it is seen that if 6 < 6. (6. is the value of 
curvature for P = 1; it depends on C, n and v) then fi, will be the fre- 
quency of predominantly transverse vibrations, and 4 of predominantly 
longitudinal vibrations. For 6 > 6.. Sz, (lower for a given set of para- 
meters) will be the frequency of predominantly longitudinal vibrations, 
and 4 will be the frequency of predominantly transverse vibrations. An 
approximate value of 6. for a few first values of n may be found by 
setting P = 1 in (4.3). Solving for 6 we obtain 6. = n. 

It is seen that the lower frequency does not always correspond to pre- 
dominantly transverse vibrations [ 5, p. 118 1, [ 6, p. 135 I, Thus, for 
the range of parameters under consideration, the lower frequency corre- 
sponds to the longitudinal vibrations provided that 6 > 6’. It has to be 
noted that Q- is close to “1 for small 6, and to $ for large 6. In 
other words, fl- is always close to the frequency of predominantly trans- 
verse vibrations. 

In the experiments [ 2 1 the shell was given initial transverse excita- 
tions, and consequently the frequency of predominantly transverse vibra- 
tions was measured there, that is, the frequency close to Q-. It was de- 
monstrated above, however, that this “flexural frequency” need not be 
always the lowest frequency. For large 6, the frequency of predominantly 
longitudinal vibrations will be substantially lower than the “flexural 
frequency” observed experimentally. 
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